Electrochemical behaviour and voltammetric sensitivity at arrays of nanoscale interfaces between immiscible liquids.
نویسندگان
چکیده
Arrays of nanoscale interfaces between immiscible electrolyte solutions were formed using silicon nitride nanopore array membranes. Nanopores in the range from 75 nm radius down to 17 nm radius were used to form the nano-interfaces. It was found that the liquid organic phase electrolyte solution filled the pores so that inlaid nano-interfaces were formed with the aqueous phase. Cyclic voltammetry at these nano-interface arrays demonstrated steady-state behaviour at the larger interfaces but the voltammetric wave-shape became progressively worse as the interface size decreased. It was found that the ion transfer currents were ca. 50% of those expected based on theoretical calculations, which is attributed to overlap of diffusion zones at adjacent nano-interfaces. Here, the separation between adjacent nano-interfaces was 20-times the interface radius. The analytical sensitivity for ion transfer from the aqueous to the 1,6-dichlorohexane organic phase was estimated from calibration plots of current density versus concentration of aqueous tetraethylammonium cation. The sensitivity was in the range of 65 μA cm(-2) μM(-1) (at 75 nm radius interfaces) to 265 μA cm(-2) μM(-1) (at 17 nm radius interfaces). The sensitivity depended directly on the inverse of the nano-interface radius, implying that smaller interfaces will provide better sensitivity, due to the enhanced flux of analyte arising from convergent diffusion to smaller electrochemical interfaces.
منابع مشابه
Voltammetric Determination of Tryptophan Using a Carbon Paste Electrode Modified with Magnesium Core Shell Nanocomposite and Ionic Liquids
A novel carbon paste electrode modified with ionic liquid (n-hexyl-3-methylimidazolium hexafluoro phosphate) and magnetic core-shell manganese ferrite nanoparticles (MCSILCPE) was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for electro-oxidation of tryptophan, is described. Cyclic voltammetry (CV), choronoamperometry (CHA) and square wave voltammet...
متن کاملNanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening
Room-temperature ionic liquids (RTILs) are new materials with fundamental importance for energy storage and active lubrication. They are unusual liquids, which challenge the classical frameworks of electrolytes, whose behaviour at electrified interfaces remains elusive, with exotic responses relevant to their electrochemical activity. Using tuning-fork-based atomic force microscope nanorheologi...
متن کاملRecent advances in the use of ionic liquids for electrochemical sensing.
Ionic Liquids are salts that are liquid at (or just above) room temperature. They possess several advantageous properties (e.g. high intrinsic conductivity, wide electrochemical windows, low volatility, high thermal stability and good solvating ability), which make them ideal as non-volatile electrolytes in electrochemical sensors. This mini-review article describes the recent uses of ionic liq...
متن کاملElectrochemical Sensing and Imaging Based on Ion Transfer at Liquid/Liquid Interfaces.
Here we review the recent applications of ion transfer (IT) at the interface between two immiscible electrolyte solutions (ITIES) for electrochemical sensing and imaging. In particular, we focus on the development and recent applications of the nanopipet-supported ITIES and double-polymer-modified electrode, which enable the dynamic electrochemical measurements of IT at nanoscopic and macroscop...
متن کاملElectrochemical Behavior of 2-Aminothiazole at Poly Glycine Modified Pencil Graphite Electrode
Electro analysis of 2-Aminothiazole (2-AT) by a low cost poly Glycine modified Pencil Graphite Electrode (poly Gly/PGE) was studied using of cyclic voltammetric (CV) and differential pulse voltammetric (DPV) techniques. The optimal experimental conditions to determine 2-AT was setup by the variation of the current with scan rate, concentration and pH. Electrochemical performance of the 2-AT at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Analyst
دوره 136 22 شماره
صفحات -
تاریخ انتشار 2011